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1. Some Complex Stuff!
1.1. Almost Complex Manifolds. Let M be a manifold. Over M we have the
tangent bundle, TM . We can then take the endomorhpism bundle of TM , written End(TM),
which is again a vector bundle over M . The fiber over x ∈M consists of the endomorphisms
of the tangent space TxM . What we are interested in are particular kinds of sections of this
bundle.

Definition (Almost Complex Structure). An almost complex structure is a section, J :
M → End(TM), of End(TM) such that J2 = −id (here, we think of J as a family of maps
Jx : TxM → TxM , x ∈M).
A pair (M,J) is called an almost complex manifold.

Perhaps a more intuitive way to think of an almost complex structure is akin to the way
you can think of a Riemannian metric. One definiton of a Riemannian metric is an inner
product on the tangent spaces of M , which varies smoothly across the manifold. You can
think of an almost complex structre as a linear complex structure on each tangent space
which varies smoothly over the manifold. Some interesting consequences of M admitting
an almost complex structure are that it is necessarily even dimensional and orientable. The
fact that it is even dimensional should be easy enough to see from the fact that each tangent
space has a complex structure, and thus must be even dimensional. The adjective “almost”
refers to the non-integrability of the section J . Let’s say some more about this:

Recall that, i ∈ C, thought of as an endomorphism of a complex vector space V has
two eigenvalues: 1 and −1, and so two eigenspaces, which we call V (1,0) and V (0,1). An
almost complex structure J on a manifold M will allow us to make a similar splitting of
the complexified tangent bundle of M : TMC := TM ⊗ C (here, C is to be thought of as
the trivial complex line bundle over M) into two subbundles, T (1,0)M and T (0,1)M . We are
already at one way of telling if J is integrable:

J is integrable ⇐⇒ [T (1,0)M,T (1,0)M ] ⊂ T (1,0)M

that is, if the Lie bracket of any two sections of T (1,0)M is again a section of T (1,0)M (sections
of this are (holomorphic) vector fields). This looks like what the word “integrable” means in
the sense of Frobenius’ Theorem. Perhaps the quickest way to check whether J is integrable
is with the Nieulander-Nirenberg Theorem, which states that J is integrable if and only if
NJ = 0, where NJ is the Nijenhuis tensor which is defined as

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

for vector fields X, Y on M .
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Yet another way to think of this is as follows. We can begin constructing differential
forms on M using TMC, and so we can construct what are called (p, q)-forms. First, some
notation:

T (p,q)M = T (1,0)M ⊗ · · · ⊗ T (1,0)M︸ ︷︷ ︸
p−times

⊗T (0,1)M ⊗ · · · ⊗ T (0,1)M︸ ︷︷ ︸
q−times

Definition ((p, q)-form). Let (M,J) be an almost complex manifold. We define the space of
(p, q)-forms on M as

Ω(p,q)(M) := Γ((T (p,q)M)∗)

This gives us a way to decompose the usual differential r-forms on M (where, again, we’ve
used the complexified tangent bundle):

Ωr(M)C =
∑
p+q=r

Ω(p,q)(M).

On Ω•(M)C, we have the usual deRham differential

d : Ωr(M)C → Ωr+1(M)C

Since Ωr(M)C is written as a direct sum, we have projection maps

π(p,q) : Ωr(M)C → Ω(p,q)(M)

for any p+ q = r, and this allows us to define two new operators

∂ : Ω(p,q)(M)→ Ω(p+1,q)(M)

∂ = π(p+1,q) ◦ d
∂̄ : Ω(p,q)(M)→ Ω(p,q+1)(M)

∂̄ = π(p,q+1) ◦ d

Now, the sum of all the projection maps π(p,q), p + q = r, must be the identity map on
Ωr(M)C, and as such, we get that

d =
∑

r+s=p+q+1

π(r,s) ◦ d = ∂ + ∂̄ + · · · .

This leads us to another definiton of J being integrable:

J is integrable ⇐⇒ d = ∂ + ∂̄,

and with some work, one also has the additional equivalent condition:

J is integrable ⇐⇒ ∂̄2 = 0.

We usually call an integrable almost complex structure simply a complex structure. A
manifold together with a complex structure is called a complex manifold.

Remark.

(1) This isn’t exactly the definiton of a complex manifold, but it implies that the manifold
is complex. The definition of a complex manifold is a manifold for which the transition
maps are holomorphic. The precise story is easier to say in coordinates. A complex
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manifold comes with local holomorphic coordinates (z1, ..., zn), zk = xk + iyk, around
any point p ∈M such that

i
∂

∂xk
=

∂

∂yk
and i

∂

∂yk
= − ∂

∂xk
.

Replacing i with J , we can define a section J of End(TM), which is an integrable
almost complex structure. On an almost complex manifold, around any point p, we
can find local coordinates (x1, y1, ..., xn, yn) for which

J
∂

∂xk
=

∂

∂yk
and J

∂

∂yk
= − ∂

∂xk

at p, but we cannot guarantee that this even holds in a neighborhood of p. If, however,
around any point we can find a coordinate neighborhood in which the above holds for
any point in the neighborhood, we can patch the structures together to form a complex
structure. This is yet another (rather impractical) equivalent definiton of an almost
complex structure being integrable.

(2) On a complex manifold ∂̄2 = 0, and so we get a chain complex
(
Ωp,•(M), ∂̄

)
, and so

we can take its cohomology. This is called the Dolbeault cohomology of M .
(3) It can be shown that an almost complex structure on a 2-dimensional manifold is

always integrable.

1.2. Riemann Surfaces.

Definition (Riemann Surface). A Riemann surface is a one dimensional complex manifold.
(Keep in mind, this is one complex dimensional!!) That is, locally, Riemann surfaces look
like C (with it’s complex structure).

Example.

(1) The sphere, CP1.
(2) C itself.
(3) Any open subset of C.
(4) Σg, the surface of genus g. Note that these, for g > 0, have several distinct complex

structures. These are the objects in the Teichmüller space (or, at least one interpre-
tation of them) of the surface Σg.

(5) One can take the sphere CP1 and puncture it any number of times.

2. Pseudoholomorphic Curves
Let (M,J) be an almost complex manifold, and let (Σ, j) be a Riemann surface (j is the

complex structure on Σ).

Definition (Pseudoholomorphic Curve). A smooth map u : (Σ, j)→ (M,J) is called pseu-
doholomorphic or (j, J)-holomorphic, or simply J-holomorphic if j is understood, if du is
complex-linear with respect to j and J , i.e.,

du ◦ j = J ◦ du,

which can alternatively be written

du+ J ◦ du ◦ j = 0.
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We define the operator ∂̄J which picks out the complex anti-linear part of du by

∂̄J(u) =
1

2
(du+ J ◦ du ◦ j)

then we can say a curve u is (j, J)-holomorphic if

∂̄J(u) = 0.

This is the analogue of the Cauchy-Riemann equations for J-holomorphic curves. Let’s
see that this makes sense with our usual notion of holomorphic on Cn:

Let’s first start with passing to local coordinates on Σ. We can work in a chart φα : Uα → C
on Σ (Uα ⊂ Σ is open). By doing this, we can assume that our Riemann surface is (C, i),
where i is the usual complex structure. Let’s give C the coordinates z = s + it. Define
uα = u ◦ φ−1

α . In this case we have

∂̄Juα =
1

2

[(
∂uα
∂s

ds+
∂uα
∂t

dt

)
+ J(uα)

(
∂uα
∂t

ds− ∂uα
∂s

dt

)]
=

1

2

[(
∂uα
∂s

+ J(uα)
∂uα
∂t

)
ds+

(
∂uα
∂t
− J(uα)

∂uα
∂s

)
dt

]
From this, we can see that ∂̄Juα = 0 if

∂uα
∂s

+ J(uα)
∂uα
∂t

= 0 (1)

(the dt coefficient is this, multiplied by J(uα)).

Now, if we assume M = Cn with the usual complex structure i, under the identification
Cn ∼= Rn ⊕ iRn we get

i =

(
0 −In
In 0

)
.

Letting uα = f + ig, equation (1) becomes(
∂f

∂s
+ i

∂g

∂s

)
+ i

(
∂f

∂t
+ i

∂g

∂t

)
=

(
∂f

∂s
− ∂g

∂t

)
+ i

(
∂f

∂t
+
∂g

∂s

)
= 0,

the familiar Cauchy-Riemann equations (if you like, take n = 1).

3. Symplectic Manifolds
3.1. Definitions and Examples. Let M be a smooth manifold and let ω ∈ Ω2(M).
ω is called closed if dω = 0. ω is called nondegenerate if one of these equivalent things hold

• the induced bundle map
ω̃ : TM → T ∗M

is a bundle isomorphism.
• given a vector field X on M , if for all vector fields Y on M

ω(X, Y ) ≡ 0,

then X = 0.
• ωn 6= 0, where dimM = 2n.
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Definition (Symplectic Manifold). A 2-form ω on M which is closed and nondegenerate is
called a symplectic form on M . A pair (M,ω) is called a symplectic manifold.

Remark. A symplectic manifold is necessarily even dimensional (real dimension).

Example.

(1) Cn(z1, ..., zn) with ωst =
i

2

n∑
j=1

dzj ∧ dz̄j. If you write zj = xj + iyj, then ωst =

n∑
k=1

dxj ∧ dyj.

(2) CPn with the Fubini-Study form

ωFS = i∂∂̄ log(|z|2)
where z = [z0 : · · · : zn] are homogeneous coordinates on CPn.

(3) The 2n-torus T2n = S1(p1)× S1(q1)× · · · × S1(pn)× S1(qn) with ω =
n∑
j=1

dpj ∧ dqj.

There are two special types of submanifolds of symplectic manifolds we will be concerned
with here:

Definition.

(1) A submanifold L ⊂ M such that ω|TL ≡ 0 is called a Lagrangian submanifold.
Usually we just call these Lagrangians. A Lagrangian submanifold necessarily has
half the dimension of M .

(2) A submanifold S ⊂M such that ω|TS is again a symplectic form is called a symplectic
submanifold. A symplectic submanifold can have any even codimension.

Example.

(1) The n-torus Tn = S1× · · · ×S1 ⊂ C× · · · ×C = Cn where Cn has the standard sym-
plectic form is Lagrangian. Additionally, the usual inclusion Rn ⊂ Cn is Lagrangian.
The submanifold RPn ⊂ CPn is Lagrangian with respect to the Fubini-Study form.

(2) Cm ⊂ Cn for m < n are symplectic submanifolds. The submanifolds CPm ⊂ CPn,
m < n are symplectic submanifolds.

3.2. Symplectic Manifolds and Almost Complex Structures. Let (M,ω)
be a symplectic manifold. An almost complex structure J on M is called

• ω-tame, or is said to be tamed by ω, if

ω(v, Jv) > 0

• ω-compatible if it is ω-tame and in addition satisfies

ω(Jv, Jw) = ω(v, w)

Remark. Note that, if J is ω-compatible, we get an induced Riemannian metric on the
symplectic manifold

gJ(v, w) = ω(v, Jw).

Proposition. Given a symplectic manifold (M,ω), there exists an ω-compatible almost com-
plex structure on M . In fact, in the space J of almost complex structures on M , the set of
ω-compatible almost complex structures, J (ω), is contractible.
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The proof of this fact is via a simple lemma

Lemma. On a manifold M , a symplectic form ω, a Riemannian metric g, and an almost
complex structure J which are compatible. Then any two determine the third, i.e.,

• given ω and an ω-compatible J , we get a Riemannian metric gJ as above
• given g and J , we get a symplectic form ωJ which tames J by

ωJ(v, w) = g(Jv, w)

• given g and ω, we get an ω-compatible J by

J(v) = g̃−1 ◦ ω̃(v)

where g̃, ω̃ : TM → T ∗M are the induced isomorphisms.

This lemma has to do with the so-called “2 out of 3 property” of U(n):

U(n) = O(2n) ∩GL(n,C) ∩ Sp(2n,R)

moreover, U(n) is the intersection of any two of these.

Proof of theorem. The fact that every smooth manifold has a Riemannian metric is a basic
exercise in differential topology. By the third point of the lemma, we thus get an ω-compatible
almost complex structure. The fact that J (ω) is contractible follows from the fact that the
space of Riemannian metrics is contractible. This follows from the fact that the space of
inner products on a vector space is affine. �

3.3. Hamiltonian diffeomorphisms. Let (M,ω) be a symplectic manifold. Given
a smooth function h : M → R, define the Hamiltonian vector field of h to be the vector field
Xh such that

ıXh
ω = dh.

A Hamiltonian diffeomorphism of M is defined to be the time 1 flow, ψ, of a Hamiltonian
vector field.

4. Theorems and Applications
4.1. Generalization of the Riemann Mapping Theorem. Consider again
the symplectic manifold (Cn, ωst). Let D denote the unit disc in C. The proof of this result
is an application of holomorphic curves, but is quite involved.

Theorem (Gromov ’85). Let L ⊂ Cn be a compact Lagrangian submanifold. Then there
exists a nonconstant holomorphic disc u : D → Cn such that u(∂D) ⊂ L.

Corollary. A Lagrangian as above has H1(L;R) 6= 0.

Proof. Let λ = 1
2

∑n
j=1(xjdyj−yjdxj). (Notice that dλ = ωst.) Then the integral of λ around

C = u(∂D) is nonzero, and so [λ] 6= 0. This is because∫
C

λ =

∫
u(D)

dλ =

∫
D

u∗ω =

∫
D

|du|2 6= 0.

�

Another corollary of this theorem essentially says that there are always intersections be-
tween a Lagrangian submanifold and any Hamiltonian deformation of it (under appropriate
assumptions).
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Definition (Convex at Infinity). A noncompact symplectic manifold (M,ω) is called convex
at infinity if there exists a pair (f, J), where J is an ω-compatible almost complex structure
and f : M → [0,∞) is a proper smooth function such that

ωf (v, Jv) ≥ 0, ωf := −d(df ◦ J),

for every x outside some compact subset of M and every v ∈ TxM .

Corollary. Let (M,ω) be a symplectic manifold without boundary, and assume that (M,ω) is
convex at infinity. Let L ⊂M be a compact Lagrangian submanifold such that [ω] vansishes
on π2(M,L). Let ψ : M →M be a Hamiltonian symplectomorphism. Then ψ(M)∩M 6= ∅.

4.2. The Nonsqueezing Theorem. Let B2n(r) be the closed ball of radius r and
center 0 in R2n. Another application of holomorphic curves is the following

Theorem (Gromov). If ι : B2n(r) → R2n is a symplectic embedding (the image is a sym-
plectic submanifold of R2n) such that ι(B2n(r)) ⊂ B2(R)× R2n−2, then r ≤ R

and a further generalization of it is

Theorem. Let (M,ω) be a compact symplectic manifold of dimension 2n − 2 such that
π2(M) = 0. If there is a symplectic embedding of the ball (B2n(r), ωst) into B2(R)×M , then
r ≤ R.

4.3. Classification of Compact Symplectic 4-manifolds.

Theorem (The Classification Theorem (Gromov ’85 [1]; McDuff ’90 [2]) (*)). Let (V, ω)
be a compact symplectic 4-manifold and suppose (V,C, ω) is a minimal pair where C is a
symplectically embedded 2-sphere with self-intersection C · C ≥ 0. Then (V, ω) is symplec-
tomorphic either to CP2 with its usual Kähler form, or to a symplectic S2-bundle over a
Riemann surface M . Further, this symplectomorphism may be chosen so that it takes C
either to a complex line or quadric in CP2, or to a fiber of the S2-bundle, or, if M = S2, to
a section of this bundle.
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